74 research outputs found

    Model-Robust Designs for Quantile Regression

    Full text link
    We give methods for the construction of designs for linear models, when the purpose of the investigation is the estimation of the conditional quantile function and the estimation method is quantile regression. The designs are robust against misspecified response functions, and against unanticipated heteroscedasticity. The methods are illustrated by example, and in a case study in which they are applied to growth charts

    Multivariate varying coefficient model for functional responses

    Get PDF
    Motivated by recent work studying massive imaging data in the neuroimaging literature, we propose multivariate varying coefficient models (MVCM) for modeling the relation between multiple functional responses and a set of covariates. We develop several statistical inference procedures for MVCM and systematically study their theoretical properties. We first establish the weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic bias and variance, and then we derive asymptotic bias and mean integrated squared error of smoothed individual functions and their uniform convergence rate. We establish the uniform convergence rate of the estimated covariance function of the individual functions and its associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We also propose a simultaneous confidence band for each individual effect curve. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply MVCM to investigate the development of white matter diffusivities along the genu tract of the corpus callosum in a clinical study of neurodevelopment.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1045 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An Alternative Approach to Functional Linear Partial Quantile Regression

    Full text link
    We have previously proposed the partial quantile regression (PQR) prediction procedure for functional linear model by using partial quantile covariance techniques and developed the simple partial quantile regression (SIMPQR) algorithm to efficiently extract PQR basis for estimating functional coefficients. However, although the PQR approach is considered as an attractive alternative to projections onto the principal component basis, there are certain limitations to uncovering the corresponding asymptotic properties mainly because of its iterative nature and the non-differentiability of the quantile loss function. In this article, we propose and implement an alternative formulation of partial quantile regression (APQR) for functional linear model by using block relaxation method and finite smoothing techniques. The proposed reformulation leads to insightful results and motivates new theory, demonstrating consistency and establishing convergence rates by applying advanced techniques from empirical process theory. Two simulations and two real data from ADHD-200 sample and ADNI are investigated to show the superiority of our proposed methods

    Expectile Matrix Factorization for Skewed Data Analysis

    Full text link
    Matrix factorization is a popular approach to solving matrix estimation problems based on partial observations. Existing matrix factorization is based on least squares and aims to yield a low-rank matrix to interpret the conditional sample means given the observations. However, in many real applications with skewed and extreme data, least squares cannot explain their central tendency or tail distributions, yielding undesired estimates. In this paper, we propose \emph{expectile matrix factorization} by introducing asymmetric least squares, a key concept in expectile regression analysis, into the matrix factorization framework. We propose an efficient algorithm to solve the new problem based on alternating minimization and quadratic programming. We prove that our algorithm converges to a global optimum and exactly recovers the true underlying low-rank matrices when noise is zero. For synthetic data with skewed noise and a real-world dataset containing web service response times, the proposed scheme achieves lower recovery errors than the existing matrix factorization method based on least squares in a wide range of settings.Comment: 8 page main text with 5 page supplementary documents, published in AAAI 201
    • …
    corecore